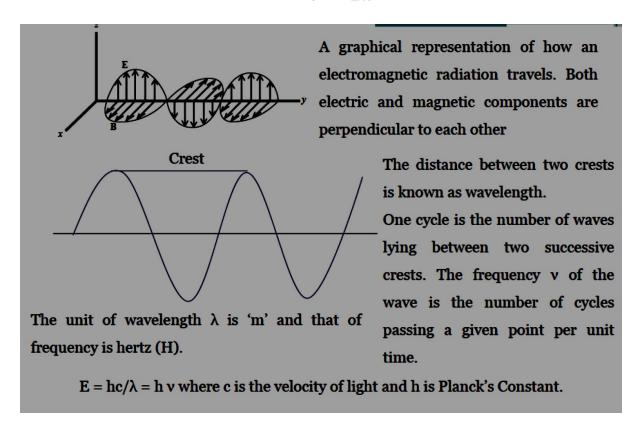
Atomic Structure

- Atomic derived from Greek word which means 'not divisible'.
- ➤ In 1808 John Dalton proposed that matter is composed of small indestructible particles 'atoms'.
- According to Dalton's atomic theory Atoms of all the elements are alike and they cannot be created, divided or destroyed. These are different for different elements.
- ➤ Goldstein (1876) disclosed that atom comprises of some small fundamental particles on the basis of discharge tube experiment.

Particle	Electron	Proton	Neutron
Symbol	e, -1eo, 1βo	p, -1H1, 1p1	on1, n
Discovered by	J.J. Thomson (1887)	Goldstein (1919)	Chadwick (1932)
Charge	-1.6021 X 10-19 C	1.6021 X 10-19 C	No charge
Mass	9.10 X 10-31 kg	1.6722 X 10-27	1.675 X 10-27 kg
		kg	

Rutherford's Nuclear Atomic Model:

- Atoms consist of central nucleus encircled by electrons moving in an orbit.
- Nucleus consists of positively charged protons and varies according to elements.
- o The numbers of protons and electrons are equal and the atom is neutral.
- o Nucleus contains the entire mass of an atom.
- o Nucleus/atom ratio is 1:1012.


Drawbacks of Rutherford Model:

- o It didn't explain the stability of an atom.
- The model predicts H-atom spectrum to be continuous but in real the spectrum is discrete line spectrum.

Electromagnetic Radiation

The maximum displacement A is known as amplitude. The period τ is the time for one revolution and since the angular path for one revolution is 2π rad, $\tau = \frac{2\pi}{\omega}$ where ω is the angular velocity and its SI unit is rad.s-1. The frequency is the reciprocal of the period.

$$v = \frac{1}{\tau} = \frac{\omega}{2\pi}$$

And therefore $\omega = (2\pi \ v)$ and the mathematical form of the displacement y,

$$y = A \sin(\omega t)$$

The ωt is called the phase.

The equation for simple harmonic motion is given:

$$\frac{d^2y}{dt^2} = -\omega^2y$$

Blackbody Radiation and Energy Quantization:

A blackbody is a body that absorbs all the electromagnetic radiation that falls on it. A good approximation to a blackbody is a cavity with a tiny hole. Radiation that enters the hole is repeatedly reflected within the cavity.

Planck's theoretical expression for the frequency distribution of blackbody radiation is given by:

$$R(v) = \frac{2\pi h}{c^2} \frac{v^3}{e^{hv}/kT - 1}$$

Planck obtained a numerical value of h by fitting the formula to the observed blackbody curves. The modern value is $h=6.626 \times 10-34 \text{ J.s}$